Effect of post-harvest treatments of polyamines on colour of stored peach fruits

SUMMY ULLAH AND S.K. JAWANDHA

ABSTRACT: Peach fruit is highly perishable and climacteric in nature. It undergoes various physiological and biochemical changes during fruit ripening and these changes are continuous to occur after harvesting that leads to poor post-harvest fruit quality. An experiment was planned to study the effect of polyamines on the colour changes of peach fruit during low temperature storage. Physiologically mature, uniform and healthy fruits were harvested and treated for 5-minutes in aqueous solutions of spermidine, spermine and putrescine at three different concentrations viz., 1.0, 2.0 and 3.0 mmol L⁻¹, respectively and 2.0 kg fruit from each replication of each treatment was packed in corrugated fibre board (CFB) boxes (5% perforation) with paper lining and kept at low temperature conditions (0 -1°C and 90-95% RH) for 32-days. Fruit samples were analysed after 8, 16, 24 and 32 days of storage for various physico-chemical characteristics. Result revealed that the application of polyamines delayed the loss of green colour in peach fruits. Fruits treated with putrescine @ 3 mmol L⁻¹ showed minimum “a” and “b” values, followed by putrescine @ 2 mmol L⁻¹ treatment, while the maximum “a” and “b” values were recorded in untreated fruits.

KEY WORDS: Peach, Colour, Storage, Spermidine, Spermine, Putrescine

University, Ludhiana. Physiologically mature peach fruits of cv. Shan-i-Punjab were picked randomly from all the four directions of the plants with the help of secateurs in the early morning hours in the 1st week of May. The bruised and diseased fruits were sorted out and healthy fruits were washed and air dried at room temperature. Selected fruits were treated for 5-minutes in aqueous solutions of spermidine, spermine and putrescine at three different concentrations viz., 1.0, 2.0 and 3.0 mmol L\(^{-1}\). A total of ten treatments were given comprising three replications in each treatment; T\(_1\) [Spermidine (1.0 mmol L\(^{-1}\))], T\(_2\) [Spermidine (2.0 mmol L\(^{-1}\))], T\(_3\) [Spermidine (3.0 mmol L\(^{-1}\))], T\(_4\) [Spermine (1.0 mmol L\(^{-1}\))], T\(_5\) [Spermine (2.0 mmol L\(^{-1}\))], T\(_6\) [Spermine (3.0 mmol L\(^{-1}\))], T\(_7\) [Putrescine (1.0 mmol L\(^{-1}\))], T\(_8\) [Putrescine (2.0 mmol L\(^{-1}\))], T\(_9\) [Putrescine (3.0 mmol L\(^{-1}\))], and T\(_{10}\) [Control (Water dip)]. After drying, the fruits were packed in corrugated fibre board (CFB) boxes of two kg capacity in layers and subsequently placed in cold storage conditions (0 to 1°C and 90-95 % RH). Fruit samples were analyzed for surface colour changes on the day of harvesting and after 8, 16, 24 and 32 days of storage. The colour of fruits was measured with colour difference meter (Model: Mini Scan XE Plus, Made: Hunter Lab, USA) and expressed as “a” and “b” hunter colour values (Hunter, 1975). The data were statistically analyzed by Factorial Completely Randomized Design (CRD) as described by Singh et al. (1998).

The data pertaining to the effect of post-harvest treatments of polyamines on the colour changes of peach fruit are presented in Fig. 1 and 2. It shows that the application of polyamines delayed the loss of green colour in peach fruits. The colour development was improved with the advancement of storage period. All the treatments showed a continuous increase in values of “a” and “b” with the increase in storage period and attained maximum values (8.98 and 27.21, respectively) at the end of storage period. After 8 days of storage, the control fruit showed maximum “a” (5.64) and “b” (24.66) values, while the minimum values for “a” (4.33) and “b” (23.17) were observed in putrescine @ 3 mmol L\(^{-1}\) treated fruits, followed by putrescine @ 2 mmol L\(^{-1}\) and spermidine @ 3 mmol L\(^{-1}\) treated fruits. A similar trend was followed by “a” and “b” values after 16, 24 and 32 days of storage. The improvement in colour during storage might be due to the degradation of the chlorophyll pigments of the fruits and increased synthesis of carotenoids and anthocyanin pigments (Wankier et al., 1970; Wang et al., 1971). The results obtained in the present studies are in favour with the findings of Novita and Purwoko (2004) who reported that polyamines inhibited the change in fruit colour of papaya during storage. Valero et al. (1998) also reported that vacuum infiltration of lemon fruit with putrescine and calcium chloride resulted in delayed colour change. Martinez-Romero et al. (2002) also reported that putrescine application delayed the colour changes in apricots.

REFERENCES

