Resource productivity and resource use efficiency in soybean production

B.R. PAWAR AND N. VIJAYKUMAR

ABSTRACT

Investigation was carried out during the year 2010-2011. About 32 soybean growers were randomly selected from eight villages of Udgir tehsil of Latur district of Maharashtra. Cross sectional data were collected from soybean growers with the help of pretested schedule by personal interview method. Data were related to soybean output and inputs like area under soybean, hired human labour, bullock labour, machine labour, seed, manure and use of nitrogen, phosphorus, potash and family labour as resources. Cobb Douglas production function was fitted to the data. The results revealed that, regression co-efficient of human labour was (0.129) followed by machine labour (0.024) which were positive and highly significant at 1 per cent level. Regression co-efficients of bullock labour (0.067) and plant protection (0.011) were positive and significant at 5 per cent level. Regression co-efficients of seed, manure, nitrogen and phosphorus were also positive but non-significant. Marginal product of area under soybean was 10.803 q followed by machine labour (0.274 q), bullock labour (0.231 q) and so on. MVP to price ratio with respect to phosphorus was 3.01 followed by that of nitrogen (2.98). Hence, preference might be given to increase the use of phosphorus on priority basis in soybean production.

KEY WORDS: Soybean, Estimates, Marginal product, Intercept, Production

Soybean [Glycine max (L.) Merill] is the most important crop grown in India. It is the richest and cheapest source of high quality protein, mineral, vitamins and fats. It supplies most of the nutriential constituents essential for human growth.

India is the fifth largest soybean producing country in the world. Madhya Pradesh tops with its share of 70 per cent of the total area under soybean followed by Maharashta (19%) and Rajasthann (8%) in the country (Sharma et al., 2006). Soybean was introduced in India in 1970-71, mainly for rich protein and edible oil content. It was introduced in Maharashtra during the year 1984-85. It is triple beneficiary crop, which contains 18.20 per cent edible oil, 45 per cent high quality protein and high level of essential of amino acid. It is commonly referred to as one of the most nutritious amongst the beans and also having tremendous industrial potentials. It is rich in unsaturated fatty acid with anticholesterol properties.

Latur district of Maharashtra has favourable climate for soybean as oilseed crop. Hence, soybean is predominant crop in cropping pattern of farmer in the district. The district has medium to heavy soils. The average rainfall of district is 750 mm. In soybean production, area under soybean, human labour, bullock labour, machine labour, seed, manure, nitrogen, phosphorus, potash and family labour are the important resources. In production process, some of the resources are either over utilization or under utilization. By keeping in view the resource management in soybean production, the present investigation has been undertaken to determine the resource use efficiency in soybean production.
METHODOLOGY

Multistage sampling design was used in selection of district, tehsil, villages and soybean growers. In first stage, Latur district was selected purposively. In the second stage, Udgir tehsil was selected on the basis of higher area under soybean. In the third stage, eight villages were selected from the tehsil on the basis of higher area under soybean production. The selected villages were namely Belsakarga, Dhondihipparga, Madlapur, Mogha, Mortalwadi, Rawangaon, Tadlapur and Togri. In the fourth stage, four soybean growers were randomly selected from each of the villages. The cross sectional data were collected from 32 soybean growers with the help of pre-tested schedule for the year 2010-11. The data were related to output as well as use of resources namely area under soybean, human labour, bullock labour, seed, manure and fertilizer and so on. Cobb-Douglas production function was fitted to the data to estimate resource productivity with respect to each of the explanatory variables. The fitted equation was as follows.

\[Y = a X_1^{b_1} X_2^{b_2} X_3^{b_3} ... X_n^{b_n} e^u \]

In this functional form \(Y \) is dependent variable, \(X_i \) are independent resource variables, \(a \) is the constant representing intercept of the production function and \(b_i \) are the regression co-efficients of the respective resource variables. The regression co-efficients obtained from this function directly represent the elasticities of production, which remain constant throughout the relevant ranges of inputs. The sum of co-efficients that is \(b_i \) indicates return to scale. This function can easily be transformed into a linear form by making logarithmic transformation. After logarithmic transformation of this function is,

\[\log Y = \log a + b_1 \log X_1 + b_2 \log X_2 + ... + b_n \log X_n + u \log e \]

The equation fitted was of the following formula:

\[Y = a X_1^{b_1} X_2^{b_2} X_3^{b_3} ... X_n^{b_n} e^{u} \]

where,
\(Y \) = Estimated soybean production in quintals per farm
\(a \) = Intercept of production function, \(b_i \) = Partial regression co-efficient of the respective resource variable (i=1, 2, ..., 10), \(X_1 \) = Area under soybean in hectares per farm, \(X_2 \) = Human labour in man days per farm, \(X_3 \) = Bullock labour in pair days per farm, \(X_4 \) = Machine labour in hours per farm, \(X_5 \) = Seed in kg per farm, \(X_6 \) = Manure in quintals per farm, \(X_7 \) = Nitrogen in kg per farm, \(X_8 \) = Phosphorus in kg per farm, \(X_9 \) = Potash in kg per farm and \(X_{10} \) = Plant protection in liter per farm (Chamak et al., 1978).

ANALYSIS AND DISCUSSION

The findings related to elasticity of production, marginal production and resource use efficiency in soybean production were obtained and are presented in Table 1.

Elasticity in soybean production:

Regression co-efficients with respect to various explanatory variables were calculated and are presented in Table 1. Regression co-efficient of human labour was as elasticity with 0.129 which was positive and highly significant at 1 per cent level. It inferred that if there is 1 per cent increased in use of human labour over its geometric mean, it would lead to increase in soybean production by 0.129 per cent. Similarly, regression co-efficient of machine labour was 0.024 which was also positive and highly significant at 1 per cent level. It showed that when increase in use of machine labour by 1 per cent, it would cause to increase soybean production by 0.024 per cent. In next order, regression co-efficient of bullock labour indicated 0.067 which was significant at 5 per cent level. When use of bullock labour increased by 1 per cent, it would cause to increase in soybean production by 1 per cent at its geometric mean. Similarly, regression co-efficient of plant protection was 0.011 which was also positive and significant at 5 per cent level. When use of plant protection increased by 1 per cent, it would lead to increase soybean production by 0.011 per cent. The regression co-efficient of area under soybean was highest as 0.354 but it was positive and non significant. Similarly, regression co-efficients of seed, manure, nitrogen and phosphorus were also positive but non-significant. On the contrary, regression co-efficient of potash was negative (-0.004) which was non-significant. Co-efficient of determination \(R^2 \) was 0.810 which indicated that the variation was explained due to variation in all the independent variables. It was clear that, each explanatory variable on its own was very important but together they explained significantly part of variation in soybean production. The sum of partial regression co-efficients was 0.681 which indicated decreasing return to scale. The results are in conformity to those obtained by Pant (2005) and Sharma et al. (2006) with respect to elasticity of production.

Marginal productivity in soybean production:

Regarding resource productivity (Table 1) marginal product with respect to area under soybean was 10.803 quintals. It implied that when addition of 1 hectare of land to geometric mean, the additional yield of soybean would be 10.803 quintals. In next order, marginal product of machine labour was 0.274 quintal. It inferred that when addition of 1 hour of machine labour, it would lead to give additional product of soybean by 0.274 quintal. Similarly, marginal product of bullock labour was 0.231 quintal which indicated that additional of 1 pair of bullock labour could cause to give 0.31 quintal of
soybean in production process. It was clear that, addition of 1 litre of plant protection could give the additional yield of soybean by 0.177 quintal. Addition of 1 kg of nitrogen and 1 kg of phosphorus could cause to give the additional yield of 0.019 and 0.036 quintal, respectively. The results are in close correspondence with findings obtained by Singh et al. (1983) and Jawanjal (2001).

Resource use efficiency in soybean production:

In regard to resource use efficiency, MVP to price of phosphorus was highest as 3.01 followed by that of nitrogen (2.98), area under soybean (2.59), then plant protection (2.01) and so on. It inferred that in soybean production, priority could be given to increase the use of phosphorus, followed by nitrogen, area under soybean and plant protection. In other words, the phosphorus, nitrogen, areas under soybean and plant protection were under utilization resources in soybean production. It was clear that profit is maximized, if the marginal value product of the factor is equal to the marginal cost of the factor. Thus, manure showed the ratio of 1.12 which tends to unity. In other words, manure resource was efficiently used in soybean production followed by that of bullock labour (1.50), seed (1.57) and machine labour (1.60). On the contrary MVP to price ratio of potash was negative as-1.97 (Table 1). It inferred that, there was excess use of potash in soybean production. Hence, there was need to reduce the use of potash in soybean production. These results were in agreement with the earlier results obtained by Bahadur et al. (1998) and Kalyankar et al. (1990).

REFERENCES

