Chemical Control of *Earias vittella* (Fabricius) on Okra

Key words :
Insecticides, *E. vittella*, Okra, Chemical control

SUMMARY

Among the different insecticides tested against *Earias vittella* (Fabricius) on okra, profenophos + cypermethrin 0.044%, chlorpyriphos + cypermethrin 0.055%, cypermethrin 0.006% and profenophos 0.05%, were found to be the most effective in reducing the fruit infestation i.e. 6.47 to 10.52%. The highest yield of healthy fruits was recorded in the treatment of profenophos + cypermethrin 0.044% (2366.6 kg/ha) followed by chlorpyriphos + cypermethrin 0.055% (2155.35 kg/ha), cypermethrin 0.006% (2127.06 kg/ha) and profenophos 0.05% (2103.91 kg/ha). The treatments with cypermethrin 0.006% gave the highest NICBR (1: 20.3) followed by profenophos + cypermethrin (1: 11.9), chlorpyriphos (1: 10.4), chlorpyriphos + cypermethrin (1: 10.2) and profenophos (1: 8.7).

Okras are an important vegetable crop grown all over India and tropical and sub-tropical parts of the world. The crop is vulnerable to attack by many insect pests, among which fruit borer (*Earias vittella* and *E. insulana*) is the most important pest causing direct damage to the marketable fruits. It is alone reported to cause 57.1% fruit infestation and 54.04% yield loss in okra (Chaudhary and Dadheech, 1989). At present, many newer and ready mixed insecticides are available in the market and there is not much precise information available about their efficacy against okra fruit borer. Attempts were therefore made to find out the efficacy of certain new molecules against okra fruit borer under the field conditions.

Fruit infestation :

The data on per cent fruit infestation (Table 1) recorded at each fruit picking indicated that all the insecticides were significantly superior over the control for minimizing the fruit infestation due to *E. vittella*. Among the various insecticides tested, the lowest infestation (8.48%) due to fruit borer was recorded in the treatment of profenophos 40 EC + cypermethrin 4 EC at 0.044%. However, it was at par with treatments chlorpyriphos 50 EC + cypermethrin 5 EC at 0.055%, profenophos 0.05% and cypermethrin 0.006% as they registered 9.90, 12.40 and 12.61 per cent fruit infestation, respectively. The next better treatments were methomyl 0.05%, acepate 0.05% and chlorpyriphos 0.05% which recorded from ten randomly selected and tagged plants from the net area of each plot before 24 hours of each spraying. Subsequently, the observations on infested and healthy okra fruits and yield of healthy okra fruits were also recorded at each picking. On the basis of number of damaged and healthy okra fruits, the percentage infestation was calculated and the data were statistically analyzed. Statistical analysis of data was carried out by the Fisher’s analysis of variance techniques as given by Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

The results obtained from the present investigation in Table 1 and 2.
registered 17.66, 17.67 and 17.70 per cent fruit infestation, respectively. The treatment of triazophos 35 EC +
deltamethrin 1 EC at 0.036% recorded 22.91 per cent fruit infestation. The remaining treatments viz., azadirachtin
0.003%, *Bacillus thuringiensis* var. *kurstaki* 1.5 kg/ha and neem seed kernel extract 5% were found to be least
effective against the shoot and fruit borer as they registered 27.05, 27.19 and 29.97 per cent fruit damage, respectively.
More or less similar observations were also recorded after second spraying.

Overall mean:

Looking to the overall mean per cent fruit infestation (Table 1) after two sprayings, the treatments of profenophos 40 EC + cypermethrin 4 EC at 0.044% and chlorpyriphos 50 EC + cypermethrin 5 EC at 0.055% exhibited minimum fruit infestation i.e. 6.47 and 8.56%, respectively due to the pest and they were statistically at par with each other and can be considered as most effective treatments. Also, the highest fruit infestation was recorded in the treatment of neem seed kernel extract 5% (28.88%).

Yield and economics:

The data (Table 1 and 2) indicated that profenophos 40 EC combined with cypermethrin 4 EC at 0.044%,
chlorpyriphos 50 EC combined with cypermethrin 5 EC at 0.055%, cypermethrin 0.006% and profenophos 0.05%
were found significantly superior over rest of the treatments and gave the higher yield of okra fruits. Yield of healthy fruits in these treatments was recorded 2366.6, 2155.35, 2127.06, 2103.91 kg/ha, respectively. The insecticidal treatments viz., chlorpyriphos 0.05%, acephate 0.05%, methomyl 0.05% and triazophos 35 EC +
deltamethrin 1 EC at 0.036% were found effective and next in order as they registered 1833.85, 1756.69, 1736.11
and 1640.95 kg/ha yield of okra fruits, respectively. The remaining treatments viz., azadirachtin 0.003%, *B. t.* @
1.5 kg/ha and neem seed kernel extract 5% were found the least effective.

Considering the per cent increase in the yield of healthy fruits over control due to the insecticidal
Table 2: Economics of different insecticidal treatments against *E. vittella* on okra

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Treatments</th>
<th>Qty. of insecticide (kg/l or ml/ha)</th>
<th>Price of insecticide (Rs./l or kg)</th>
<th>Cost of insecticide (Rs./ha)</th>
<th>Total cost including labour charges (Rs./ha)</th>
<th>Yield of healthy okra fruits (kg/ha)</th>
<th>Realization (Rs./ha)</th>
<th>NICBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profenophos + cypermethrin 0.044%</td>
<td>1.2</td>
<td>540</td>
<td>648</td>
<td>848</td>
<td>2366.26</td>
<td>18930.04</td>
<td>1: 11.9</td>
</tr>
<tr>
<td>2</td>
<td>Chlorpyriphos + cypermethrin 0.055%</td>
<td>1.2</td>
<td>520</td>
<td>624</td>
<td>824</td>
<td>2155.35</td>
<td>17242.80</td>
<td>1: 10.2</td>
</tr>
<tr>
<td>3</td>
<td>Profenophos 0.05%</td>
<td>1.2</td>
<td>600</td>
<td>720</td>
<td>920</td>
<td>2103.91</td>
<td>16831.28</td>
<td>1: 8.7</td>
</tr>
<tr>
<td>4</td>
<td>Chlorpyriphos 0.05%</td>
<td>1.2</td>
<td>300</td>
<td>360</td>
<td>560</td>
<td>1833.85</td>
<td>14670.78</td>
<td>1: 10.4</td>
</tr>
<tr>
<td>5</td>
<td>Acephate 0.05%</td>
<td>1.5</td>
<td>550</td>
<td>825</td>
<td>1025</td>
<td>1756.69</td>
<td>14053.50</td>
<td>1: 5.1</td>
</tr>
<tr>
<td>6</td>
<td>Methomyl 0.05%</td>
<td>0.8</td>
<td>1280</td>
<td>1024</td>
<td>1224</td>
<td>1736.11</td>
<td>13888.89</td>
<td>1: 4.1</td>
</tr>
<tr>
<td>7</td>
<td>Triazophos + deltamethrin 0.036%</td>
<td>0.7</td>
<td>700</td>
<td>840</td>
<td>1040</td>
<td>1640.95</td>
<td>13127.57</td>
<td>1: 4.1</td>
</tr>
<tr>
<td>8</td>
<td>Cypermethrin 0.006%</td>
<td>0.288</td>
<td>700</td>
<td>202</td>
<td>402</td>
<td>2127.06</td>
<td>17016.46</td>
<td>1: 20.3</td>
</tr>
<tr>
<td>9</td>
<td>Azadirachtin 0.003%</td>
<td>3.6</td>
<td>336</td>
<td>1210</td>
<td>1410</td>
<td>1548.35</td>
<td>12386.83</td>
<td>1: 2.5</td>
</tr>
<tr>
<td>10</td>
<td>NSKE 5%</td>
<td>5 Kg</td>
<td>250</td>
<td>1250</td>
<td>1450</td>
<td>1332.30</td>
<td>10658.44</td>
<td>1: 0.9</td>
</tr>
<tr>
<td>11</td>
<td>Bt 1.5 kg/ha</td>
<td>1.5 Kg</td>
<td>1170</td>
<td>1755</td>
<td>1955</td>
<td>1448.05</td>
<td>11584.36</td>
<td>1: 1.9</td>
</tr>
<tr>
<td>12</td>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The labour charge has been calculated @ Rs. 100/ha/spray. Price of okra fruits has been calculated @ Rs. 8/Kg.

treatments, profenophos 40 EC combined with cypermethrin 4 EC at 0.044%, chlorpyriphos 50 EC combined with cypermethrin 5 EC at 0.055%, cypermethrin 0.006% and profenophos 0.05% gave 113.46, 94.43, 91.87 and 89.79 per cent increase in yield over control, respectively.

It can be seen from the data (Table 2) that the highest Net Incremental Cost Benefit Ratio (1: 20.3) was obtained in the treatment of cypermethrin 0.006% followed by profenophos 40 EC combined with cypermethrin 4 EC at 0.044% (1: 11.9), chlorpyriphos at 0.05% (1: 10.4), chlorpyriphos 50 EC combined with cypermethrin 5 EC at 0.05% (1: 10.2) and profenophos at 0.05% (1: 8.7), acephate at 0.05% (1: 5.1), methomyl at 0.05% (1: 4.1), triazophos 35 EC + deltamethrin 1 EC at 0.036% (1: 4.1), azadirachtin at 0.003% (1: 2.5), *B. t.* at 1.5 kg/ha (1: 1.9) and neem seed kernel extract at 5 kg/ha (1: 0.9).

These results are in close agreement with the works of Dubey and Ganguli (1998), Rai and Satpathy (1999), Das *et al.* (2001), Singh and Jayswal (2001), Misra *et al.* (2002) and Bagade *et al.* (2005). Thus, the treatment of cypermethrin 0.006% was found effective and economic against the pest on okra.

REFERENCES

© HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE