Effect of irrigation regimes and different levels of nitrogen on seed yield of jute (Corchorus olitorius)

DEBASREE SAHA, A. ZAMAN, TH. GAN GARANI DEVI AND S.K. GUNRI

ABSTRACT
A field experiment was conducted to study the effect of irrigation regimes and nitrogen levels on jute (Corchorus olitorius, variety JRO-524) seed production at Central Research (CR) Farm, B.C.K.V. Gayeshpur, West Bengal during August to December 2008. The results showed that yield attributes i.e. no. of pods per plant, no. of seeds per pod, 1000 seed weight and seed yield significantly increased with the increasing dose of nitrogen and irrigation level. An increase in irrigation frequency increased the total water use but decreased the water use efficiency. Maximum jute seed yield was obtained under irrigation regime I3 (ψm = -0.03 Mpa at 30 cm soil depth) which received 2 irrigations with 40 kg nitrogen ha⁻¹ (N₄ level). I3 irrigation regime increased the seed yield by 39.83% over rainfed situation.

KEY WORDS : Irrigation regimes, Nitrogen levels, Jute seed production, Vegetative mean

INTRODUCTION
Jute is a natural product of commercial importance which plays an important role in Indian economy. Jute is cultivated in 0.835 million ha area in India. Though West Bengal is the leading state in jute fibre production, but the major seed growing areas are Gunter Prakasham district of Andhra Pradesh, Akola Amaravati of Maharastra and Bellary and Raichur of Karnataka. So seed production of this state need to be increased for efficient and economic fibre production. Jute seed production by vegetative propagation is an alternative method, suitable for production of high quality seeds with out deteriorating the fibre yield and quality (Majumder 1978). Therefore, this experiment was carried out to find the suitable level of irrigation and dose of nitrogen for higher jute seed yield by vegetative mean (top cutting method) in West Bengal condition.

MATERIALS AND METHODS
The field experiment was conducted at Central Research (CR) Farm, B.C.K.V. Gayeshpur, during August to December of 2008. The soil was sandy-loam in texture having moderate drainage with pH 6.9, organic carbon 0.64%, total nitrogen 0.08%, available P₂O₅ 21.10 kg ha⁻¹, available K₂O 190.65 kg ha⁻¹. Total rainfall was 44.25 cm received during the experimental period. The experiment was laid out in split-plot design replicated three times. There were three main plots of irrigation treatment viz., I₁: rainfed, I₂: ψm = -0.05 Mpa at 30 cm soil depth (1irrigation of 5cm), I₃: ψm = -0.03 Mpa at 30 cm soil depth (2 irrigation, each of 5 cm) and four levels of nitrogenous fertilizer were given in sub-plots viz., N₁: 10 kg ha⁻¹, N₂: 20 kg ha⁻¹, N₃: 30 kg ha⁻¹, N₄: 40 kg ha⁻¹. The top portion (upper 15 cm) of jute plant (variety JRO – 524) which was grown for fibre purpose (100 – 110 days plant age) was cut and used as planting material. Planting was done at a spacing of 30cm × 15cm. Before planting the top portion of jute were treated with IBA (rooting hormone) 1000 mg per l water then fungicide (Bavistin). Half of nitrogen (urea) as per treatment was applied at the time of planting and remaining half was top-dressed at 30 days after planting. The crop was fertilized with a uniform dose of 20 kg ha⁻¹ P₂O₅ and 30 kg ha⁻¹ K₂O. Water use efficiency was calculated on the basis of seed yield per cm water used (irrigation water + effective rainfall + soil profile contribution) by the jute crop. Due to low intensity, all the rain received was considered as effective rainfall.